extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC6).1D4 = C3xC2wrC4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).1D4 | 192,157 |
(C22xC6).2D4 = C3xC23.D4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).2D4 | 192,158 |
(C22xC6).3D4 = C3xC42:C4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).3D4 | 192,159 |
(C22xC6).4D4 = C3xC42:3C4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).4D4 | 192,160 |
(C22xC6).5D4 = C3xD4:4D4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).5D4 | 192,886 |
(C22xC6).6D4 = C3xD4.9D4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).6D4 | 192,888 |
(C22xC6).7D4 = C3xC23.7D4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).7D4 | 192,891 |
(C22xC6).8D4 = C3:C2wrC4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 8+ | (C2^2xC6).8D4 | 192,30 |
(C22xC6).9D4 = (C2xD4).D6 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).9D4 | 192,31 |
(C22xC6).10D4 = C23.D12 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).10D4 | 192,32 |
(C22xC6).11D4 = C23.2D12 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 8+ | (C2^2xC6).11D4 | 192,33 |
(C22xC6).12D4 = C23.3D12 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 8+ | (C2^2xC6).12D4 | 192,34 |
(C22xC6).13D4 = C23.4D12 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).13D4 | 192,35 |
(C22xC6).14D4 = C24:5Dic3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).14D4 | 192,95 |
(C22xC6).15D4 = (C22xC12):C4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).15D4 | 192,98 |
(C22xC6).16D4 = C42:4Dic3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).16D4 | 192,100 |
(C22xC6).17D4 = C42:5Dic3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).17D4 | 192,104 |
(C22xC6).18D4 = C23.5D12 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).18D4 | 192,301 |
(C22xC6).19D4 = M4(2):D6 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).19D4 | 192,305 |
(C22xC6).20D4 = D12:1D4 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 8+ | (C2^2xC6).20D4 | 192,306 |
(C22xC6).21D4 = C22:C4:D6 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).21D4 | 192,612 |
(C22xC6).22D4 = C42:7D6 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).22D4 | 192,620 |
(C22xC6).23D4 = C42:8D6 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 4 | (C2^2xC6).23D4 | 192,636 |
(C22xC6).24D4 = 2+ 1+4:6S3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 24 | 8+ | (C2^2xC6).24D4 | 192,800 |
(C22xC6).25D4 = 2+ 1+4.4S3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).25D4 | 192,801 |
(C22xC6).26D4 = 2+ 1+4.5S3 | φ: D4/C1 → D4 ⊆ Aut C22xC6 | 48 | 8- | (C2^2xC6).26D4 | 192,802 |
(C22xC6).27D4 = C3xC4.9C42 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).27D4 | 192,143 |
(C22xC6).28D4 = C3xC23.10D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).28D4 | 192,827 |
(C22xC6).29D4 = C3xC23.11D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).29D4 | 192,830 |
(C22xC6).30D4 = C3xC42:C22 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).30D4 | 192,854 |
(C22xC6).31D4 = C3xD4:D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).31D4 | 192,882 |
(C22xC6).32D4 = C3xD4.7D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).32D4 | 192,885 |
(C22xC6).33D4 = C3xC8:D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).33D4 | 192,901 |
(C22xC6).34D4 = C3xC8:2D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).34D4 | 192,902 |
(C22xC6).35D4 = C3xC8.D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).35D4 | 192,903 |
(C22xC6).36D4 = C3xC23.19D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).36D4 | 192,915 |
(C22xC6).37D4 = C3xC23.20D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).37D4 | 192,918 |
(C22xC6).38D4 = C3xD8:C22 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).38D4 | 192,1464 |
(C22xC6).39D4 = C23.35D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).39D4 | 192,26 |
(C22xC6).40D4 = C22.2D24 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).40D4 | 192,29 |
(C22xC6).41D4 = C24.12D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).41D4 | 192,85 |
(C22xC6).42D4 = C42:3Dic3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).42D4 | 192,90 |
(C22xC6).43D4 = C12.2C42 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).43D4 | 192,91 |
(C22xC6).44D4 = (C6xD4):C4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).44D4 | 192,96 |
(C22xC6).45D4 = (C6xQ8):C4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).45D4 | 192,97 |
(C22xC6).46D4 = C12.3C42 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).46D4 | 192,114 |
(C22xC6).47D4 = C12.20C42 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).47D4 | 192,116 |
(C22xC6).48D4 = C23.39D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).48D4 | 192,280 |
(C22xC6).49D4 = C23.40D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).49D4 | 192,281 |
(C22xC6).50D4 = C23.15D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).50D4 | 192,282 |
(C22xC6).51D4 = D12.31D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).51D4 | 192,290 |
(C22xC6).52D4 = D12:13D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).52D4 | 192,291 |
(C22xC6).53D4 = D12.32D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).53D4 | 192,292 |
(C22xC6).54D4 = D12:14D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).54D4 | 192,293 |
(C22xC6).55D4 = C23.43D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).55D4 | 192,294 |
(C22xC6).56D4 = C22.D24 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).56D4 | 192,295 |
(C22xC6).57D4 = C23.18D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).57D4 | 192,296 |
(C22xC6).58D4 = Dic6:14D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).58D4 | 192,297 |
(C22xC6).59D4 = Dic6.32D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).59D4 | 192,298 |
(C22xC6).60D4 = C24.55D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).60D4 | 192,501 |
(C22xC6).61D4 = C24.56D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).61D4 | 192,502 |
(C22xC6).62D4 = C24.57D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).62D4 | 192,505 |
(C22xC6).63D4 = C24.58D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).63D4 | 192,509 |
(C22xC6).64D4 = C24.20D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).64D4 | 192,511 |
(C22xC6).65D4 = C24.21D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).65D4 | 192,512 |
(C22xC6).66D4 = C2xC23.6D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).66D4 | 192,513 |
(C22xC6).67D4 = C24.59D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).67D4 | 192,514 |
(C22xC6).68D4 = C24.60D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).68D4 | 192,517 |
(C22xC6).69D4 = C24.25D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).69D4 | 192,518 |
(C22xC6).70D4 = C24.27D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).70D4 | 192,520 |
(C22xC6).71D4 = C4:C4.232D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).71D4 | 192,554 |
(C22xC6).72D4 = C4:C4.233D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).72D4 | 192,555 |
(C22xC6).73D4 = C4:C4.234D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).73D4 | 192,557 |
(C22xC6).74D4 = C4:C4:36D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).74D4 | 192,560 |
(C22xC6).75D4 = C4.(C2xD12) | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).75D4 | 192,561 |
(C22xC6).76D4 = C4:C4.236D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).76D4 | 192,562 |
(C22xC6).77D4 = C4:C4.237D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).77D4 | 192,563 |
(C22xC6).78D4 = C42:6D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).78D4 | 192,564 |
(C22xC6).79D4 = (C2xC6).D8 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).79D4 | 192,592 |
(C22xC6).80D4 = C4:D4.S3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).80D4 | 192,593 |
(C22xC6).81D4 = C6.Q16:C2 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).81D4 | 192,594 |
(C22xC6).82D4 = D12:16D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).82D4 | 192,595 |
(C22xC6).83D4 = D12:17D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).83D4 | 192,596 |
(C22xC6).84D4 = C3:C8:22D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).84D4 | 192,597 |
(C22xC6).85D4 = C4:D4:S3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).85D4 | 192,598 |
(C22xC6).86D4 = Dic6:17D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).86D4 | 192,599 |
(C22xC6).87D4 = C3:C8:23D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).87D4 | 192,600 |
(C22xC6).88D4 = C3:C8:5D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).88D4 | 192,601 |
(C22xC6).89D4 = (C2xQ8).49D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).89D4 | 192,602 |
(C22xC6).90D4 = (C2xC6).Q16 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).90D4 | 192,603 |
(C22xC6).91D4 = (C2xQ8).51D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).91D4 | 192,604 |
(C22xC6).92D4 = D12.36D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).92D4 | 192,605 |
(C22xC6).93D4 = D12.37D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).93D4 | 192,606 |
(C22xC6).94D4 = C3:C8:24D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).94D4 | 192,607 |
(C22xC6).95D4 = C3:C8:6D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).95D4 | 192,608 |
(C22xC6).96D4 = Dic6.37D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).96D4 | 192,609 |
(C22xC6).97D4 = C3:C8.29D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).97D4 | 192,610 |
(C22xC6).98D4 = C3:C8.6D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).98D4 | 192,611 |
(C22xC6).99D4 = C23.51D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).99D4 | 192,679 |
(C22xC6).100D4 = C23.52D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).100D4 | 192,680 |
(C22xC6).101D4 = C23.53D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).101D4 | 192,690 |
(C22xC6).102D4 = C23.54D12 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).102D4 | 192,692 |
(C22xC6).103D4 = C24:2D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).103D4 | 192,693 |
(C22xC6).104D4 = C24:3D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).104D4 | 192,694 |
(C22xC6).105D4 = C24.4D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).105D4 | 192,696 |
(C22xC6).106D4 = C2xD12:C4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).106D4 | 192,697 |
(C22xC6).107D4 = M4(2):24D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).107D4 | 192,698 |
(C22xC6).108D4 = C2xC23.7D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).108D4 | 192,778 |
(C22xC6).109D4 = C24.29D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).109D4 | 192,779 |
(C22xC6).110D4 = C24.31D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).110D4 | 192,781 |
(C22xC6).111D4 = C4oD4:3Dic3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).111D4 | 192,791 |
(C22xC6).112D4 = C4oD4:4Dic3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).112D4 | 192,792 |
(C22xC6).113D4 = C2xQ8:3Dic3 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).113D4 | 192,794 |
(C22xC6).114D4 = (C6xD4):9C4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).114D4 | 192,795 |
(C22xC6).115D4 = (C3xD4):14D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).115D4 | 192,797 |
(C22xC6).116D4 = (C3xD4).32D4 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).116D4 | 192,798 |
(C22xC6).117D4 = C2xC23.21D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).117D4 | 192,1051 |
(C22xC6).118D4 = C2xC8:D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).118D4 | 192,1305 |
(C22xC6).119D4 = C2xC8.D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).119D4 | 192,1306 |
(C22xC6).120D4 = C24.9C23 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).120D4 | 192,1307 |
(C22xC6).121D4 = C2xC23.23D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).121D4 | 192,1355 |
(C22xC6).122D4 = C2xD4:D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).122D4 | 192,1379 |
(C22xC6).123D4 = C2xQ8.13D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).123D4 | 192,1380 |
(C22xC6).124D4 = C12.C24 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 48 | 4 | (C2^2xC6).124D4 | 192,1381 |
(C22xC6).125D4 = C2xQ8.14D6 | φ: D4/C2 → C22 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).125D4 | 192,1382 |
(C22xC6).126D4 = C3xC23.7Q8 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).126D4 | 192,813 |
(C22xC6).127D4 = C3xC23.24D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).127D4 | 192,849 |
(C22xC6).128D4 = C3xC23.25D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).128D4 | 192,860 |
(C22xC6).129D4 = C3xC8:8D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).129D4 | 192,898 |
(C22xC6).130D4 = C3xC8:7D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).130D4 | 192,899 |
(C22xC6).131D4 = C3xC8.18D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).131D4 | 192,900 |
(C22xC6).132D4 = C6xC4oD8 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).132D4 | 192,1461 |
(C22xC6).133D4 = C12.9C42 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).133D4 | 192,110 |
(C22xC6).134D4 = C2xC2.Dic12 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).134D4 | 192,662 |
(C22xC6).135D4 = C2xC8:Dic3 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).135D4 | 192,663 |
(C22xC6).136D4 = C2xC24:1C4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).136D4 | 192,664 |
(C22xC6).137D4 = C23.27D12 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).137D4 | 192,665 |
(C22xC6).138D4 = C2xC2.D24 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).138D4 | 192,671 |
(C22xC6).139D4 = C23.28D12 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).139D4 | 192,672 |
(C22xC6).140D4 = C24:30D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).140D4 | 192,673 |
(C22xC6).141D4 = C24:29D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).141D4 | 192,674 |
(C22xC6).142D4 = C24.82D4 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).142D4 | 192,675 |
(C22xC6).143D4 = C24.75D6 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).143D4 | 192,771 |
(C22xC6).144D4 = C22xC24:C2 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).144D4 | 192,1298 |
(C22xC6).145D4 = C22xD24 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).145D4 | 192,1299 |
(C22xC6).146D4 = C2xC4oD24 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).146D4 | 192,1300 |
(C22xC6).147D4 = C22xDic12 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).147D4 | 192,1301 |
(C22xC6).148D4 = C22xC4:Dic3 | φ: D4/C4 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).148D4 | 192,1344 |
(C22xC6).149D4 = C3xC22.SD16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).149D4 | 192,133 |
(C22xC6).150D4 = C3xC23.31D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).150D4 | 192,134 |
(C22xC6).151D4 = C3xC42:6C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).151D4 | 192,145 |
(C22xC6).152D4 = C3xC23.9D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).152D4 | 192,148 |
(C22xC6).153D4 = C3xC24:3C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).153D4 | 192,812 |
(C22xC6).154D4 = C3xC23.34D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).154D4 | 192,814 |
(C22xC6).155D4 = C3xC23.8Q8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).155D4 | 192,818 |
(C22xC6).156D4 = C3xC23.23D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).156D4 | 192,819 |
(C22xC6).157D4 = C6xC23:C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).157D4 | 192,842 |
(C22xC6).158D4 = C3xC23.36D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).158D4 | 192,850 |
(C22xC6).159D4 = C3xC23.37D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).159D4 | 192,851 |
(C22xC6).160D4 = C3xC23.38D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).160D4 | 192,852 |
(C22xC6).161D4 = C6xC4wrC2 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).161D4 | 192,853 |
(C22xC6).162D4 = C3xM4(2):C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).162D4 | 192,861 |
(C22xC6).163D4 = C3xC22:D8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).163D4 | 192,880 |
(C22xC6).164D4 = C3xQ8:D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).164D4 | 192,881 |
(C22xC6).165D4 = C3xC22:SD16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).165D4 | 192,883 |
(C22xC6).166D4 = C3xC22:Q16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).166D4 | 192,884 |
(C22xC6).167D4 = C3xC22.D8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).167D4 | 192,913 |
(C22xC6).168D4 = C3xC23.46D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).168D4 | 192,914 |
(C22xC6).169D4 = C3xC23.47D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).169D4 | 192,916 |
(C22xC6).170D4 = C3xC23.48D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).170D4 | 192,917 |
(C22xC6).171D4 = C6xC22.D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).171D4 | 192,1413 |
(C22xC6).172D4 = C6xC8:C22 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).172D4 | 192,1462 |
(C22xC6).173D4 = C6xC8.C22 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).173D4 | 192,1463 |
(C22xC6).174D4 = C6.C4wrC2 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).174D4 | 192,10 |
(C22xC6).175D4 = C4:Dic3:C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).175D4 | 192,11 |
(C22xC6).176D4 = C12.8C42 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).176D4 | 192,82 |
(C22xC6).177D4 = C24.13D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).177D4 | 192,86 |
(C22xC6).178D4 = C12.C42 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).178D4 | 192,88 |
(C22xC6).179D4 = C2xC42:4S3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).179D4 | 192,486 |
(C22xC6).180D4 = C2xC6.Q16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).180D4 | 192,521 |
(C22xC6).181D4 = C2xC12.Q8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).181D4 | 192,522 |
(C22xC6).182D4 = C4:C4.225D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).182D4 | 192,523 |
(C22xC6).183D4 = C2xC6.D8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).183D4 | 192,524 |
(C22xC6).184D4 = C4oD12:C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).184D4 | 192,525 |
(C22xC6).185D4 = (C2xC6).40D8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).185D4 | 192,526 |
(C22xC6).186D4 = C4:C4.228D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).186D4 | 192,527 |
(C22xC6).187D4 = C2xC6.SD16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).187D4 | 192,528 |
(C22xC6).188D4 = C4:C4.230D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).188D4 | 192,529 |
(C22xC6).189D4 = C4:C4.231D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).189D4 | 192,530 |
(C22xC6).190D4 = C2xC6.C42 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).190D4 | 192,767 |
(C22xC6).191D4 = C24.73D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).191D4 | 192,769 |
(C22xC6).192D4 = C24.74D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).192D4 | 192,770 |
(C22xC6).193D4 = C24.76D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).193D4 | 192,772 |
(C22xC6).194D4 = C2xD4:Dic3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).194D4 | 192,773 |
(C22xC6).195D4 = (C6xD4):6C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).195D4 | 192,774 |
(C22xC6).196D4 = (C2xC6):8D8 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).196D4 | 192,776 |
(C22xC6).197D4 = (C3xD4).31D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).197D4 | 192,777 |
(C22xC6).198D4 = C2xQ8:2Dic3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).198D4 | 192,783 |
(C22xC6).199D4 = (C6xQ8):6C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).199D4 | 192,784 |
(C22xC6).200D4 = (C3xQ8):13D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).200D4 | 192,786 |
(C22xC6).201D4 = (C2xC6):8Q16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).201D4 | 192,787 |
(C22xC6).202D4 = C25.4S3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).202D4 | 192,806 |
(C22xC6).203D4 = C22xDic3:C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).203D4 | 192,1342 |
(C22xC6).204D4 = C22xD6:C4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).204D4 | 192,1346 |
(C22xC6).205D4 = C2xC23.28D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).205D4 | 192,1348 |
(C22xC6).206D4 = C22xD4:S3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).206D4 | 192,1351 |
(C22xC6).207D4 = C2xD12:6C22 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 48 | | (C2^2xC6).207D4 | 192,1352 |
(C22xC6).208D4 = C22xD4.S3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).208D4 | 192,1353 |
(C22xC6).209D4 = C22xQ8:2S3 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).209D4 | 192,1366 |
(C22xC6).210D4 = C2xQ8.11D6 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).210D4 | 192,1367 |
(C22xC6).211D4 = C22xC3:Q16 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 192 | | (C2^2xC6).211D4 | 192,1368 |
(C22xC6).212D4 = C22xC6.D4 | φ: D4/C22 → C2 ⊆ Aut C22xC6 | 96 | | (C2^2xC6).212D4 | 192,1398 |
(C22xC6).213D4 = C3xC22.4Q16 | central extension (φ=1) | 192 | | (C2^2xC6).213D4 | 192,146 |
(C22xC6).214D4 = C6xC2.C42 | central extension (φ=1) | 192 | | (C2^2xC6).214D4 | 192,808 |
(C22xC6).215D4 = C6xD4:C4 | central extension (φ=1) | 96 | | (C2^2xC6).215D4 | 192,847 |
(C22xC6).216D4 = C6xQ8:C4 | central extension (φ=1) | 192 | | (C2^2xC6).216D4 | 192,848 |
(C22xC6).217D4 = C6xC4.Q8 | central extension (φ=1) | 192 | | (C2^2xC6).217D4 | 192,858 |
(C22xC6).218D4 = C6xC2.D8 | central extension (φ=1) | 192 | | (C2^2xC6).218D4 | 192,859 |
(C22xC6).219D4 = C2xC6xC22:C4 | central extension (φ=1) | 96 | | (C2^2xC6).219D4 | 192,1401 |
(C22xC6).220D4 = C2xC6xC4:C4 | central extension (φ=1) | 192 | | (C2^2xC6).220D4 | 192,1402 |
(C22xC6).221D4 = C2xC6xD8 | central extension (φ=1) | 96 | | (C2^2xC6).221D4 | 192,1458 |
(C22xC6).222D4 = C2xC6xSD16 | central extension (φ=1) | 96 | | (C2^2xC6).222D4 | 192,1459 |
(C22xC6).223D4 = C2xC6xQ16 | central extension (φ=1) | 192 | | (C2^2xC6).223D4 | 192,1460 |